7.8: Aqueous Solutions and the Concept of pH

Remember:

- Have your 7.8 notesheet ready!
- You can pause the video anytime.
- You can rewind the video anytime.
- Write down questions/comments as you go for discussion in class.

Are you ready???

Part I: The Self-Ionization of Water

- when compounds dissociate/ ionize in aqueous solution, they produce ions.
- produce ions.
 these ions are not the only ions
 in the solution—water itself also contributes ions to the solution—hydronium (H₃O⁺) and hydroxide (OH⁻)—through self-ionization.
- self-ionization of water = process of one water molecule transferring a proton to another water molecule, creating hydronium & hydroxide.
 - the extent to which water self-ionizes is not very high: In 1 Liter of pure water, the concentrations of H₃O⁺ and OH⁻ are only 1.0 x 10⁻⁷ M for each.
 - these concentrations can be expressed more easily as [H₃O⁺] = 1.0 x 10⁻⁷ M and [OH⁻] = 1.0 x 10⁻⁷ M. The brackets indicate "concentration of" in Molarity (M) (<u>not molality, m</u>).

these concentrations can be expressed more easily as [H₃O⁺] = 1.0 x 10⁻⁷ M and [OH⁻] = 1.0 x 10⁻⁷ M. The brackets indicate "concentration of" in Molarity (M) (<u>not molality, m</u>).

the product of [H₃O⁺] and [OH⁻] is equal to 1.0 x 10⁻¹⁴ M², which is a constant known as the ionization constant of water, K_w.

K_W = [H₃O⁺][OH⁻] = **1.0 x 10⁻¹⁴ M²** at 25°C

Part II: Concentration of Acidic and Basic Solutions

- because the [H₃O⁺] and [OH⁻] in pure water are equal, pure water is neutral.
- any substance whose [H₃O⁺] does not equal its [OH⁻] is going to be acidic or basic.
 - if [H₃O⁺] is greater than 1.0 x 10⁻⁷ M, the solution is acidic.

<u>Ex</u>: [H₃O⁺] of lemon juice = 3.9 x 10⁻³ M

- any substance whose [H₃O⁺] does not equal its [OH⁻] is going to be acidic or basic.
 - if [H₃O⁺] is greater than 1.0 x 10⁻⁷ M, the solution is acidic.
 - Ex: [H₃O⁺] of lemon juice = 3.9 x 10⁻³ M
 - if [H₃O⁺] is less than 1.0 x 10⁻⁷ M, the solution
 - <u>Ex</u>: [H₃O⁺] of Maalox = 3.16 x 10⁻¹¹ M
- to calculate [H₃O⁺], you must know [OH⁻], and vice versa. Then use the K_W equation rearranged for what you want:
 - **Ex1**: What is the $[H_3O^+]$ if $[OH^-] = 4.56 \times 10^{-8} \text{ M}$? $K_w = 1.0 \times 10^{-14} \text{ M}^2$

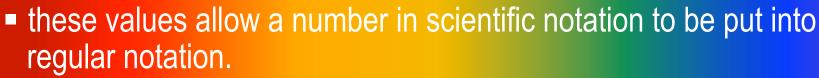
 $[H_3O^+] = ?$ $[OH^-] = 4.56 \times 10^{-8} M$

Acidic:
$$[H_{3}O^{+}] > [OH^{-}]$$

Neutral: $[H_{3}O^{+}] = [OH^{-}]$
Basic: $[H_{3}O^{+}] < [OH^{-}]$

to calculate [H₃O⁺], you must know [OH⁻], and vice versa. Then use the K_W equation rearranged for what you want:
 <u>Ex1</u>: What is the [H₃O⁺] if [OH⁻] = 4.56 x 10⁻⁸ M?

 $\begin{bmatrix} H_3O^+ \end{bmatrix} = ? \qquad \begin{bmatrix} H_3O^+ \end{bmatrix} = K_W = \frac{1.0 \times 10^{-14} \text{ M}^2}{4.56 \times 10^{-8} \text{ M}} = 2.19 \times 10^{-7} \text{ M}$


 generally, solutions whose M of [H₃O⁺] has an exponent between -1 and -7 is acidic, and solutions with a M of [H₃O⁺] with an exponent between -8 and -14 are basic.

Part III: The pH/pOH Scale and pH/pOH Calculations

- since the values for [H₃O⁺] and [OH⁻] are often very small, we have to use scientific notation numbers to express their size. This can be very cumbersome in some calculations.
- a more convenient way of expressing the acidity (or basicness) of a solution is pH and pOH.

- since the values for [H₃O⁺] and [OH⁻] are often very small, we have to use scientific notation numbers to express their size. This can be very cumbersome in some calculations.
- a more convenient way of expressing the acidity (or basicness) of a solution is pH and pOH.
 - <u>pH</u> = the negative logarithm of the hydronium ion concentration
 - **pOH** = the negative logarithm of the hydroxide ion concentration

Ex2: What is the pOH if [OH⁻] = 7.13 x 10⁻⁹ M?

Ex2: What is the pOH if [OH⁻] = 7.13 x 10⁻⁹ M?

pOH= ? [OH⁻] = 7.13 x 10⁻⁹ M $pOH = -\log[OH^{-}] = -\log(7.13 x 10^{-9} M) = 8.15$

since values of [H₃O⁺] and [OH⁻] are related by K_W (whose –log = 14.0), the following relationship exists:

the values on the pH/pOH scale are as follows:

pH + pOH = 14.0

pН 2 3 4 5 **6 7 8 9** 10 11 12 13 <u>14 pH</u> 0 1 10⁻¹ 10⁻² 10⁻³ 10⁻⁴ 10⁻⁵ 10⁻⁶ 10⁻⁷ 10⁻⁸ 10⁻⁹ 10⁻¹⁰ 10⁻¹¹ 10⁻¹² 10⁻¹³ 10⁻¹⁴ [H₃0⁺] $[H_{3}O^{+}]$ [OH⁻] 10⁻¹⁴ 10⁻¹³ 10⁻¹² 10⁻¹¹ 10⁻¹⁰ 10⁻⁹ 10⁻⁸ 10⁻⁷ 10⁻⁶ 10⁻⁵ 10-4 10⁻³ 10⁻² 10-1 [OH⁻] 9 8 7 2 pOH 14 13 12 11 10 6 5 3 1 pOH 4 $\mathbf{0}$

acidic values neutral basic values
 notice that pH values from 0 to 6.9 are acidic, 7.1 to 14 are basic, and 7.0 is neutral. In the same respect, pOH values from 0 to 6.9 are basic, 7.1 to 14 are acidic, and 7.0 is neutral.

рΗ	0	1	2	3	4	5	6	7	8	9	10	11	12	13	<u>1</u> 4 pH
[H₃O⁺]	1	10 ⁻¹	10 ⁻²	10 ⁻³	10 -4	10 ⁻⁵	10 ⁻⁶	10 ⁻⁷	10 ⁻⁸	10 ⁻⁹	10 ⁻¹⁰	10 ⁻¹¹	10 ⁻¹²	10 ⁻¹³	10 ⁻¹⁴ [H ₃ O ⁺]
[OH·]	10 ⁻¹⁴	10 ⁻¹³	10 ⁻¹²	10 ⁻¹¹	10 ⁻¹⁰	10 ⁻⁹	10 ⁻⁸	10 ⁻⁷	10 ⁻⁶	10 ⁻⁵	10 -4	10 ⁻³	10 ⁻²	10 ⁻¹	1 [OH-]
рОН	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0 pOH
	acidic values			•	neutral basi				asic	valu	60				
	tion	that												ro ha	ncia and

- notice that pH values from 0 to 6.9 are acidic, 7.1 to 14 are basic, and 7.0 is neutral. In the same respect, pOH values from 0 to 6.9 are basic, 7.1 to 14 are acidic, and 7.0 is neutral.
- the pH values of some common substance are listed in the table to the right:
- let's try two more example problems:

Material	рН	Material	рН
Gastric juice	1.0–3.0	Saliva	6.5–7.5
Lemons	2.2–2.4	Pure water	7.0
Vinegar	2.4–3.4	Blood	7.3–7.5
Soft drinks	2.0-4.0	Eggs	7.6–8.0
Oranges	3.0–4.0	Sea water	8.0-8.5
Tomatoes	4.0-4.4	Antacids	8.7
Bread	5.0-6.0	Baking soda	9.5
Rainwater	5.4–5.8	Milk of magnesia	10.5
Potatoes	5.6-6.0	Ammonia	12.3
Milk	6.3–6.6	Drain cleaner	12.7-10 8

let's try two more example problems:
<u>Ex3</u>: What is the pH if [OH⁻] = 1.45 x 10⁻³ M?
pH = ?
[OH⁻] = 1.45 x 10⁻³ M
pOH = -log[OH⁻] = -log(1.45 x 10⁻³ M) = 2.84
pH + pOH = 14
pH = 14 - pOH
pH = 14 - 2.84 = **11.16**

• **Ex4**: What is the pOH if $[H_3O^+] = 8.05 \times 10^{-12} \text{ M}$?

pOH = ? $[H_3O^+] = 8.05 \times 10^{-12} \text{ M} \text{ pH} = -\log[H_3O^+] = -\log(8.05 \times 10^{-12} \text{ M}) = 11.09$ $pH + pOH = 14 \quad pOH = 14 - pH \quad pOH = 14 - 11.09 = 2.91$

Part IV: Converting pH/pOH Values into [H₃O⁺] and [OH⁻] Values
 if you want to know the [H₃O⁺] or [OH⁻] from a given pH or pOH value, use the following equations: [H₃O⁺] = 10^{-pH} [OH⁻] = 10^{-pOH}

Part IV: Converting pH/pOH Values into
$$[H_3O^+]$$
 and $[OH^-]$ Values

 if you want to know the $[H_3O^+]$ or $[OH^-]$ from a given pH or pOH value, use the following equations:
 $[H_3O^+] = 10^{-pH}$

 Ex5: What is the $[OH^-]$ if the pH = 12.27 ?
 $[OH^-] = 10^{-pOH}$

 pH = 12.27
 pOH = 14 - pH
 pOH = 14 - 12.27 = 1.73

 pOH = ?
 $[OH^-] = 10^{-pOH}$
 $[OH^-] = 10^{-1.73} = 0.0186 = 1.86 \times 10^{-2} M$

 Ex6: What is the $[H_3O^+]$ if pH = 5.16 ?
 $[H_3O^+] = 10^{-pH}$
 $[H_3O^+] = 10^{-5.16}$
 $[H_3O^+] = ?$
 $[H_3O^+] = 10^{-pH}$
 $[H_3O^+] = 10^{-5.16}$
 $= 6.92 \times 10^{-6} M$

Make sure notesheet is completely filled in

- Preview the funsheets (7.8a, b, c)
- Rewind and review any parts that were not clear
- Bring both notesheet and funsheet packets to class

